2025新奥免费正版大全_亚洲高清国产拍精品熟女_早乙女露依作品_李丽珍演过的三电影下载_四虎影视av网站

廣告
Location:Home>>Industry News

Industry News

Synthetic Inertial Damper

Time:24 Nov,2025
<p style="text-align: center;"><img src="/ueditor/php/upload/image/20251124/1763964070465259.png" title="1763964070465259.png" alt="2.png"/></p><p style="text-align: justify;"><span style="font-family: arial, helvetica, sans-serif; font-size: 12px;">This improvement in system performance without the added cost was the basis of wanting to simulate the viscous inertial damper in software. In electronics, there is a concept of Norton to Thevenin Equivalent circuits. In this transformation, a current source (or torque in the mechanical system) and the impedance representing the motor and load inertias, and shaft spring constant, can be converted to a voltage (mechanical velocity) with the impedance in series. When an additional load is then added, the current through the load (torque coupled to the mechanical damper) can be calculated as the voltage (velocity) divided by the sum of the motor/shaft/load series impedance and the added damper impedance (Thevenin equivalent circuit). In software, we can (real-time) simulate the torque that would be needed to accelerate the damper inertia to the motor velocity, given the measured motor velocity. The torque so estimated can then be subtracted from the commanded torque to the motor (from the rest of the control loop) so that the motion of the motor with the synthetic (simulated) viscous inertial damper closely approximates that of the motor and load with the physical inertial damper attached. This simulated damper gives the same improvements in gain and phase margins of the system as would the physical inertial damper but without the size and cost disadvantages. Of course, nothing is quite free. The stepwise output of a rotary encoder and the time lag involved in processing reduce some of the margins and require a bit more complexity, but in many cases, the approximation is very good and the improvements are substantial. In the previous article, we showed that a 100:1 inertial mismatch resulted in significant peaking at resonance (motor inertia&nbsp;Jm= 1e-5 kg-m2,&nbsp;Ks= 100 Nm/radian&nbsp;≥&nbsp;Ls=1/K = 10-2 radian/Nm, load inertia&nbsp;J1= 1e-3 kg-m2): The damper inertia was selected as three times the motor inertia&nbsp;Jd=3e-5 kg-m2, and the damping constant of the viscous oil was adjusted in the simulation to give a nice overall damping with&nbsp;Bd&nbsp;= 20N/Rad/sec. The resulting system of the motor and load and damper improved the phase margin just above the resonance from -90 (for the velocity, and -180 for position) by about 120 degrees! It also reduced the peaking from 64 dB to 30.4 dB (gain of 1631 to a gain of 33.2) at resonance. We still have a phase margin of 40 degrees at 1000Hz, so the bandwidth of the system can be significantly improved. In the system modeling, we take the voltage (motor speed) of the motor with 100 times the load inertia, and we divide it by the impedance of the (motor + inertia) plus the damper. The current (torque) transmitted by the viscous coupling in the damper is the same in this topology (which is an electrical model, as inertia is always modeled as a capacitor connected to a ground node) as in the parallel version with the current (torque source). This model is not physically realizable in the mechanical design but gives an easy method to calculate the torque absorbed by the mechanical damper attached to the motor. Note: The voltage source labeled as&nbsp;Vm&nbsp;in the series circuit model is the Thevenin equivalent voltage representing the speed of the motor/shaft/load without the damper present.<br/></span></p><p style="text-align: justify;"><span style="font-family: arial, helvetica, sans-serif; font-size: 12px;">The model works as the voltage source is modeled as a zero impedance, so the damper is essentially connected across&nbsp;Jm. Although this model is not realizable in a mechanical system, it does allow us to easily calculate the torque that a physical damper would incur if attached. While this model makes it easy to calculate the damper torque, it may be harder to picture how it works. Another way to think about this model is to have the motor velocity (modeled as a voltage) drive the damper (Rd,&nbsp;Cd) with the same velocity (voltage) as the motor model. The torque (modeled as current) drawn by the damper is measured through&nbsp;Rd. This torque is subtracted from the original control torque It. The resultant net torque to the motor/shaft/load is identical to the torque that reaches the motor/shaft/load when a physical damper is in the system. Not surprisingly, the resulting system then produces the same response using the synthetic damper as it did with the physical damper! In an actual system, this damping torque calculation would be done by measuring the actual motor position as the input, estimating the velocity, and calculating the equivalent synthetic inertial damper torque term. This damper torque term is then subtracted from the commanded torque (after some scaling for torque units used and for motor torque constant) to result in a very helpful improvement in the system dynamics. The actual system has some additional filtering terms to reduce the effects of encoder resolution with its stepwise output. These calculations are done in real time with minimized delay and are performed in the time domain, so they are a little more complicated than the simple impedance calculations in the spreadsheet, but they produce a very similar response.</span></p>

CONTACT US

Tel:86-21-55155796;86-21-63563197
Fax:86-21-63561543
Address:No. 3978, Baoan Highway, Anting Town, Jiading District, Shanghai
Email:wf@wfbearings.com
Website:www.cantexa.com  www.wfbearings.com

Mobile SiteMobile Site

CopyRight 2017 All Right Reserved Shanghai Junwang Bearing Co.,Ltd
主站蜘蛛池模板: 国产AⅤ一区二区三区无码| 男同全黄h全肉动漫大全| 三级古装纶理电影在线观看| 最近中文字幕2018年| 无码专区亚洲精品中文字幕| 吴仁惠最大尺度三级| sm踩踏视频| 新金梅瓶在线观看| 玖玖资源365最新网站网址| 国产精品极品露脸清纯| 波多野结衣中文字幕在线观看| 国产精品无码AV一区二区三区| 免费黄毛片在线看| 韩国女主播内部vip自带氏巾| 国产麻豆剧果冻传媒免费网站 | 中文字幕无码亚洲视频| 国产高清在线精品一区不卡| 激情综合五月| 久久国产乱子伦精品免费台湾 | 西西泰国人体艺术摄影| 亚洲综合成av在线| 亚洲精品制服在线观看| 岳让我帮她解决生理需求| 韩国免费a级作爱片中文| 韩剧百年遗产全集| 国产精品视频免费一区二区| 亚洲女同一区二区| 古代一女被迫n男文肉辣| 国产裸体舞一区二区三区| 好男人在线播放影院| 欧美熟妇色| 欧美18videosex极品tv| 美女的隐私无遮挡| 邻居中文字幕电影| 男人桶女人18禁止| 中国老太毛多多| 中文午夜乱理片无码| 国产在线看老王影院入口2021| 小草免费观看在线播放| 年轻的护士5中文字幕| 国产欧美综合系列在线|